AD-Al11l 309

UNCLASSIFIED

ADMIRALTY MARINE TECHNOLOGY ESTABLISHMENT TEDDINGTON=-ETC F/6 20/4
FREE-WAVE PROPAGATION IN FLUID=LOADED THICK=WALLED CIRCULAR PIP==ETC(U}
NOV 81 S A LESTER

AMTE (N} -TM81093 DRIC=BR-81307







AMTE(N) TMB1093

FREE-WAVE PROPAGATION IN FLUID-LOADED
THICK-WALLED CIRCULAR PIPES

BY

S A LESTER

Summary

An infinite thick-walled pipe contains, and is surrcunded by, an
inviscid fluid. The displacements of the pipe’s wall satisfy the exact
linear equations of elasticity, and the interior and exterior fluids
satisfy the scalar Helmholtz wave equation. The differential equations
are solved by means of Fourier transforms to give the dispersion relation
connecting frequency with axial and circumferential wavenumbers. The
dispersion relation is solved numerically toc give examples of 'real’
axial wavenumber versus frequency plots for selected circumferential

harmonics. -
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INTRODUCTION

Interprstation of the vibration and sound radiation of fluid-filled
pipes is facilitated greatly by the availability of axial wavenumber
versus frequency plots. Fuller and Fahy [1 discuss the physical signi-
ficance of the real and complex branches of the wavenumber-frequency
plots of fluid-filled pipes. Walter [2] uses plots of the real branches
to demonstrate that the maximum responses of an air-filled pipe wall
occur at frequencies at which the in-vacuo pipe and rigid-walled duct
mode wavenumber—frequency plots cross each other. James [3] shows that
the sound radiation from fluid-filled pipes is better understood when the
real branches of the wavenurber—frequency plots are available.

Each of the above authors uses a shell theory [4] to describe the
pipe wall vibrations. However, much of the pipework in industrial use is
thick-walled, so it is necessary to compute wavenumber-frequency plots
based on exact linear elastic theory in order to check the validity of
shell theory. Kumar [5] studies the real and complex wavenumber plots of
fluid-filled pipes using the exact theory for axisymmetric vibrations.
Gazis [8] uses exact linear theory to investigate three-dimensional free-
wave propagation in hollow elastic cylinders.

Contained in this report is the mathematical analysis needed to
obtain the dispersion relation of a thick-walled pipe that contains and
is surrounded by a fluid. Exact linear elastic theory for an isotropic
circular pipe undergoing arbitrary motion is used. The purpose of the
work is twofold., First, it provides the initial stage in the analysis of
wave-propagation and sound radiation by layered pipes, corresponding to
previous work on layered media [6]. Secondly, it is a computationel tool
for studying free-wave propagation in fluid-filled thick pipes and it is
particularly valuable for making comparisons with shell theory.

2. PROBLEM FORMULATION

An infinite thick-walled circular pipe contains and is surrounded by
acoustic fluids of possibly different density and sound velocity.
Figure 1 shows the geometry of interest. The time harmonic factor
exp(~iwt) is omitted from all equations.

It is assumed that the displacements (ur,u¢,u2) of the pipe are

governed by the exact linear eguations of slasticity. It is convenient
to represent these displacements as Fourier transforms

ur(r,¢,z) cos(ng) { = ur(n.a,r)

ulr,e,2) ] = (1/22) £ |sin(n¢) exp(iaz) ju, (n,a,r) | da (2.1
¢ n=o ¢

uz(r,¢,z] cos(n¢) uz(n,u,r)

with upn and u, having even dependence upon the circumferential

coordinate ¢ and Us having odd dependence.
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The equations of elasticity are coupled in terms of the variables

U u¢ and u,, so it is desirabls to express these displacements in

terms of unknowns (F,G,H) which satisfy wave-equaticns. These functions
are also represented by Fourier transfoms

- - - _

Flr,¢,2) coslng) | = F(n,a,r)

Glr,¢,2) | = (1/2n) Z sin(n¢) J exp(iaz) | G{n,a,r) | da (2.2)
n=0

H(r,¢,z)J cos(n¢)J - Hin,a,r)

The stresses in the pipe’s wall have the Fourier transforms

7 r > r
rrr(r.¢,z) . cos(ng) | = rrp(n,a,r)
1r¢(r.¢,z) = (1/27) nfo sin(n¢) [ expliaz) rp¢(n,a.r) da (2.3)
1'1,7_(1",4>,z)_J ,COS(n¢)J - -sz(n,a,rJ

and the exterior and interior fluids have the transforr

-4

plr,¢,z) = (1/2nr) Z cos(ng) I expliaz)p(n,a,r)da (2.4)
n=p -0

The Fourier transform representations facilitate solution of the
wave-equations and enable relations between unknowns to be presented in
'spectral’ form. The variable o is the axial wavenumber, and n 1is the
number of wavelengths around the circumference.

The procedure for sclution is as follows. First, matrix relations
between the surface spectral stresses and displacements are obtained,
Section 3. Secondly, the spectral pressures due to the interior and
exterior fluids are expressed in terms of the spectral displacements of
the inner and outer surface respectively, Section 4. Finally, the pipe-
fluid boundary conditions are applied and the conditions necessary for
free-wave propagation are established, Section 5,

3. THE ELASTIC LAYER

Figure 1 shows a section through a pipe whose inner boundary is r=a
and whose outer boundary is r=b. The surfaces are subject to prescribed
normal and tangential spectral stresses

b Tb b & a _a lT
rr’ ‘re

{t(n,a)] =[ < 'Trz'rrr'1r¢'7rz (3.1)




P

which produce spectral surface displacements

b &t a a T
,us,ud, 38,08

[u(n,a)]=[us,u¢ 27Ypr Uyl

(3.2)

A relation is required betwesn the surface spectral stresses and
displacements.

The linear elastic equations of motion { 7]
(A+u)grad(div E)+uV§f9322/Bt2 (3.3)
are reduced to three wave esquations
v2F+k§F=o » V2G+kZG=0 , VPH+kZH=0 (3.4)

by means of the substitutions

u = AF/3r+(1/r) 3G/3¢-92H/3rdz
u, = (1/r) aF /3¢-3G/3r-(1/r) 82H/3¢ 9z (3.5)

t
u, = 3F/3z+32H/3r2+(1/1) 3H/3r+(1/12) 92H/342=3F /32 +V2H-32H/3z2

Substituting the Fourier transform representations of F, G and H
irto the equations (3.4) gives, after integrating the resulting equations,
the spectral equations

F(n,a,r) Jn(ylr)A1+Yn(ylr)A2

n,a,r) Jn(ysr]A3+Yn(YSP)A4 (3.5)

H(pr,a,r) = JH(YSP)AS*YH(YSP)A6

The spectral displacements are obtained from equations (3.5) and
(3.6) as

ur(n.a,r) = lea(ylr)A1 + leé(er)Az
+(n/r)Jn[75r)A3 + (n/r)Yn(ysr)A4

-iastA[ysr)As - i“YsYA(Ysr)AG

u¢(n,u.r) = -(n/rJJn(ylr]A1 - (n/r)Yn(ylr)A2

- st;(ysP)A3 - YsY'n(Ysr)AA (3.7)

+(ian/r]Jn(ysr‘)As + (iun/r)Yn(ySF)AS




.
,
:
;
3

uZ(n.a,r) = iaJn(ylr‘]A1 + iuYn(er)A2

2,2 2_,.2
+(a ks)Jn(Ysr]AS + (a klen(Ysr)A6

The stress-displacement relations necessary for subsequent znalysis

are
T = Adiv u + 2udy_/dr
rr - r
Te =¥ (3u¢/3r - (1/r)u¢ + [1/r)3ur/3¢) (3.8)
T = uw(3u /3z + 3y_/3r)
rz r z

which can be represented spectrally, after simplifying by the use of the
Bessel function differential equation

227" (2) +22' (2)+(22-n?)Z_(2)=0,
n n n

as
- 24 L2
t__(n,a,r) IZNlen'(er) Klin(er)]A1

2y Akl
+ [2uY1Yn'(er) Xlen(er)]A2

+

(2un/? ) v r3! (v r)-3_(v_rll A,

+

(2un/r2)[ysr‘Y;‘[ysr)-Yn(Ysr)]A4

. 24914
21auvan (YSF]AS

. VAVER )
21auYSYn (Ysr)A6

1r¢(n,u,r) = (2nu/r2)[-ylrﬂr'\(ylr)ﬂn(vlr)]A1

+ (2nn/r8)( =Y IY? (Y00 +Y (v ollA,

+

' 2 -
(u/r2)[275r0n(ysr)+tvs r? 2n2]3n(ysr)]A3 3.9)

+
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+
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+
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= 1 '
Ty (n,a,r) 21aulen(Y1r]A1

+ 2iuuleé[vlr)A2

+

(iaun/r)Jn(Ysr]A3

+

(iGUn/F)Yn(YSr)A4

+

2_,2
uYs(Za ks)Jﬁ(Ysr)AS

+

2_,2vu
uYS(Za kS)Yn(YSr)As

The boundary conditions

_.b
T {n,a,b) == rr
_.b
Tl"¢ (n,“.b] =1 ré
T (n,a,b) = 'rb
rz rz
_ .8
T (n,az,a) = 1 o
Hw(maﬁ)=TiW
_ .2
Trs {n,e,al = 1 rz
yield the matrix equation
[P(n,a)]l Aln,a)] =[1(n,a)] {3.10)
6*6 6*1 6*1

and the spectral displacements equations (3.7) evaluated at r<b and r=a
give the matrix equation

[R(n,a)1[ A(n,a)] = [u(n,al] (3.11)
6*6 6*1 6*1

The elements of the matrices [P{n,a)] and [R(n,a)] are given in
Appendix A.

Equations (3.10) and (3.11) may be used to eliminate [A(n,a)] to
give the formula

[P(n,a)l[R(n,a)] ™Y [uln,w)] = [1(n,a)] (3.12)
6*8 6*6 6*1 6*1




which is of particular usefulness when analysing layered media by the
finite element method [ 6].

4,  INTERICR AND EXTERIOR FLUIDS

(a) Interior Fluid

The linear acoustic equation {8l

V2pi = (1/02)32pi/at? (4.1)

is solved by replacing pi(r,¢.z) by its Fourier transform

representation and then integrating the resulting equation. Ite
spectral solution is

pi(n.a,r] = B1Jn(yir) + BzYn(yir) {(4.2)

The finiteness of pi(n,u,r) at the origin r<0 requires B, to be
set to zero. The relation between the fluid pressure and displacement,

viz

Bpi/BFpimzur (4.3}

evaluated at the boundary r=a enables the pressure to be expressed

in terms of the boundary displacement ur(n,a,a) as

- 2 '
pi(n,a,r) Py ur(n,a,a) Jn(Yir)/YiJn(yia) (4.4)

(b) Exterior Fluid

The solution of the wave-equation relevant to ocutgoing waves is

(8}

pe(n,a.r) = BaHn(Yer) (4.5)

The boundary condition sguation (4.3} evaluated at 1=b enables the
pressure to be expressed in terms of the displacement ur[n,a.b) as

pB(n.c..r') = pegzur(n,u.b]Hn(Yer) /YeH;\( Yeb] (4.6)

5. PIPE-FLUID BOUNDARY CONDITIONS

The boundary conditions to be applied at the interface betwsen an
elastic solid and an inviscid fluid are the continuity conditions of dis-

placement and stress in the direction normal to the interface. The
equations (4.4) and (4.6) reflect continuity of displacement and the
continuity of normal stress in the absence of external forces on the

- 10 ~
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pipe's surfaces is given by the equation

[P(na)] (Alny)] = [-p_(nsa,b),0,0,-p. (n,a,a),0,0] | (5.1)
B*6  6*1 € 641 *

?hich)nay be rearranged by making use of equations (4.4}, (4.6) and
3.11) as

[P(n,a)+Q(n,a)ll Aln,a)] = O (5.2)
6*6 6*1

The elements of [Q(n,a)] are given in Appendix A.

The system of homogeneous linear equations (5.2) has a non-trivial
soclution only if the determinant of the coefficients vanishes. For given
values of n and , there will be real and complex values of a at
which the determinant vanishes. Plots of these values versus frequency
are called wavenumber-frequency or dispersion plots. The real branches
alone are of interest here; they are the wavenumbers et which free-waves 1
propagate. The complex, or purely imaginary branches describe the
evanescent waves whose effect decreases exponentially with distance. When
an exterior fluid is present, there will be no real branches when a<k
(except for pure torsion) due to energy loss in the form of acoustic
radiation [8].

6. NUMERICAL RESULTS

Fortran programs have been written to compute and plot the real
branches of the axial wavenumber versus frequency plots. A rcot is
found simply by stepping through a range cof a-values until a sign change
occurs in the determinant: it is refirned to a selected accuracy by
repeated interval halving. Care must be taken with the Bessel function
computations otherwise spurious roots may occur. Chosen SI constants are:

Steel: E
Water: o

19.5E10 ¢
1000.0 C

0.29 p = 7700.0
1500.0

Figure 2 shows the real branches of a water~filled pipe whose inner
and outer radii are 0.2096m and 0.2350m respectively. The frequency
range (2.8 times 'ring’ frequency) and thickness to mean radius ratic
(0.114) are sufficiently small enough to allow shell modes alone in the
pipe's wall. The physical interpretation of the plots is discussed
elsewhere (1], The plots are compared with those obtained from a shell
theory [3]. The significant differences at the higher frequencies occir
when the waves are close to fluid-type waves) they are due to the
assumption, in [3], that the fluid radius is egual tc the mean radius of
the shell.

Figure 3 shows wavenurber frequency plots of an in-vacuo pipe whose
inner and outer radii are 0.10m and 0.20m respectively. The branches

-1 - .




labslled 4-10 involve 'thickness vibrations' of the pipe's wall. The
plots for circumfsrential harmonics 1 and 2 are consistent with those
obtained by Gazis [ 9] who discusses the nature of the wavenumber farilies.
The plot for n=0 has many features in common with a plot obteined for a
0.10m thick plate that has zero wavenumber for the anti-plane strain
branch - unpublished work arising from[6]. The curious behaviour of the
branch labelled 6, for n=0 and 1, has not been adequately explained.

It is also present in plate wavenumber plcts.
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P3g

The remaining
rows 1, 2 and 3.

APPENDBCIX A

The Matrix [P(n,a )l

2uy337 " (v;b) - *kiJn(Ylb]

2|| _)\2
mvﬂn(vﬁ) kﬁnﬁim

2 - _
(2un/b 1lwsbqn(Ysb) Jn(YSb)]

n

2 ] -
{2un/b ][YSan(Ysb] Yntwsb)]

u

D8 241
21auYan (Ysb)

or 2y
ZlahYsYn (Ysb]

2 - ’
(2ru/b2)( Jn(ylb) Ylen (yle]

= (2nu/b?)LY (v;b) - vlbva(wlbll

= (u/b2) 2y bl (v D) + (v2b? - 2n?)3 vy b) ]
= (w/b?) 2y bY) (v B) + (ngz - 2n2)Yn(Ysb]]
= (2iaun/b?) by 3] (v D) - 3 v )]

= (2iaun/bA) by Y (v b} - ¥ (v b))

= Ziauler'](ylb]

= 2iawy, Y} (v;b)

= (ianu/b)Jn(Ysb]

= (ianu/b)Y (v b)

= 2 o 2 1
uys(Za kslﬂn(ysb)
= 2 - 2 ’
uys(Za kS]Yn(Ysb]
rows, 4, 5 and 6, are obtained by setting b=a in
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The Matrix [R(n,a)]

ryy = Ylaé(ylb) ryy = YIYA[Ylb)

ryq = (0/b)J (vgb) ryg = (N/B)Y (¥ b)
Tye = =107 3! (Y _b) ryg = ~19Y Y1 (Y b)
ry = -(n/b)Jn(Ylb] Ty = ~(n/b)Yn(Y1b)
To3 = Yl (¥d) o = Vg n( D)

oo = (ian/b)Jn(YSb) e = (iﬁn/b)Yn(Ysb)
ryy = iaJn(vlh) rys = iaYn(Ylb)

T3z = 0 T3 = 0

rag = (a?-k2) (v b) Ty = (uz-kg)vn(ysb)

The remaining rows, 4, 5 and 6, are obtained by setting b=a in
rows 1, 2 and 3,

The Matrix [ Q(n,a)l

The elements of [Q(n,a)] are identically zero, excepting the

following
041 = Cgryy Uz = Gy U3 = CTa
Urg = Celag V15 = Calys Us = et
849 = CiTay a2 = CiTap Ug3 = G473
O44 = CiTaq O45 = CiTys Y46 = Cifas
where C, = pewan(be)/yBH'(Yeb)
Ci = piwan(yia]/yiJ'(Yia]
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FIG.1 SECTION THROUGH PIPE
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